Braids, Galois Groups, and Some Arithmetic Functions
نویسنده
چکیده
This lecture is about some new relations among the classical objects of the title. The study of such relations was started by [Bi, G, De, Ihj] from independent motivations, and was developed in [A3, C3, A-I, IKY, Dr2, O, N], etc. It is still a very young subject, and there are several different approaches, each partly blocked by its own fundamental conjectures! But it is already allowing one to glimpse some new features of the classical "monster" Gal(Q/Q), and providing a bridge connecting Gal(Q/Q) even with such "modern" objects as the quantum groups [Di'2]. I will not try to "explain" any general philosophies that are still in the air, but to draw a few lines sketching the concretely visible features of the subject.
منابع مشابه
Arithmetic Teichmuller Theory
By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...
متن کاملThe rational function analogue of a question ofSchur and exceptionality of permutationrepresentationsRobert
In 1923 Schur considered the following problem. Let f 2 ZX] be a polynomial that induces a bijection on the residue elds Z=pZ for innnitely many primes p. His conjecture, that such polynomials are compositions of linear and Dickson polynomials, was proved by M. Fried in 1970. Here we investigate the analogous question for rational functions, also we allow the base eld to be any number eld. As a...
متن کاملDeformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملA pr 2 00 5 GALOIS MODULE STRUCTURE OF p TH - POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE
In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F . In 1947 Šafarevič initiated the study of Galois groups of maximal pextension...
متن کاملChenevier’s lectures on eigenvarieties of definite unitary groups
There will be three objectives in Chenevier’s lectures: (1) construction of the eigenvarieties of definite unitary groups of any rank. (2) study of the local and global properties of the families of Galois representations on the eigenvarieties. (3) applications to standard conjectures relating arithmetic L-functions at integers and associated Selmer groups. Part (3) (lectures 6, 7) would be the...
متن کامل